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The polynomial flux-difference sphttmg method IS apphed to steady Euler equations A 
discrete set of equations which IS both conservative and posltlve IS obtamed The set of 
equations IS solved by the relaxation techmque ‘i;’ 1988 Acadcmlc Press. Inc 

1. INTRODUCTION 

In recent years, upwind techniques based on flux-vector splitting and flux- 
difference splitting for solving the Euler equations have gained considerable 
popularity. 

The flux-vector splitting approach was introduced by Steger and Warming [l] 
for the unsteady Euler equations. This splitting is based on the homogeneity of 
degree one with respect to the conservative variables p, pu, po, pE. It was shown by 
Jespersen [2] that the flux-vector splitting approach can also be used directly on 
the steady Euler equations to generate discrete equations that can be solved by 
relaxation methods. The technique, however, shows some shortcomings in the treat- 
ment of shocks. In the conservative formulation, so-called undifferenced terms 
appear. These terms represent a loss of positiveness of the discrete set of equations 
and cause oscillations in the vicinity of shocks. 

Going back to the earlier work of Godunov [3] a remedy for the shock 
oscillations can be found in not splitting the flux-vectors themselves, but the dif- 
ferences of the flux-vectors. Several flux-difference splitting procedures were 
proposed for unsteady equations, simplifying the Godunov method. The splitting of 
Roe [4] is based on the homogeneity of degree two of the flux-vectors with respect 
to the variables &, & u, & U, p H. The splitting of Osher [5, 61 is a splitting 
with respect to the variables / yp/p, U, u, ln(p/pY). An analysis on the relation 
between Godunov’s, Roe’s, and Osher’s splitting was done by Van Leer [7]. A very 
simple splitting based on the polynomial character of the flux-vectors with respect 
to the primitive variables p, u, u, p was proposed by Lombard et al. [S, 91. 

It was shown by Hemker and Spekreijse [ 10, 1 l] that the Osher scheme can be 
used directly on steady Euler equations, leading to a conservative set of discrete 

19 
0021-9991/88 $300 

Copyright r‘~ 1988 by Academx Press. Inc 
All rights 01 reprcductlon I” any form reserved 



20 E. DICK 

equations that can be solved by relaxation techniques. Hemker and Spekreijse 
chose the Osher scheme, although it is the most complex of the mentioned flux- 
difference splitting schemes, because of its rigour in the construction of the discrete 
equations and the treatment of the boundary conditions. 

In this paper, it is shown that also the simple flux-difference splitting technique of 
Lombard et al., based on the polynomial character of the flux-vectors can be used 
directly on the steady Euler equations. In the original approach of Lombard et al., 
the flux-difference splitting was based on an approximate eigenvector decom- 
position of Jacobian matrices, leading to possible errors in the vicinity of zero 
eigenvalues. With the time marching of the time dependent equations, as used by 
Lombard et al., these errors are not too important. In this paper, the eigenvector 
decomposition of the Jacobian matrices is done exactly. This results for the steady 
Euler equations in discrete field- and boundary equations which are completely 
conservative and positive. This allows relaxation directly on the steady equations. 
The treatment has the same rigour as the Hemker-Spekreijse approach, however, 
with a much simpler splitting technique. 

2. POLYNOMIAL FLUX-DIFFERENCE SPLITTING 

Steady Euler equations, in two dimensions, take the form: 

af+!Q), 
ax dy 

where the flux vectors are 

(1) 

(2) 

p is density, u and v are Cartesian velocity components, H = E + p/p is total 
enthalpy, p is pressure, E = p/(y - 1) p + $u’ + fv’ is total energy and y is adiabatic 
constant. 

Since the components of the flux vectors form polynomials with respect to the 
primitive variables p, U, v, and p, components of flux-differences can be written as 

Apu=UAp+~Au 

Apuu+p=~Au+fiApu+Ap 

=U2Ap+(~+~U)Au+Ap 

Apuv=jiiiAv+VApu 

=UVAp+~VAu+pUAv 
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ApHu=pu(~Au2+~Av*)+~(~++)Apu+ y - Apu 
Y-1 
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-- Y - +puv Au+- 
y - 1 u AP, 

where the bar denotes mean value. 
With the definition of 

q’=Q++I;i, 

the flux-difference Afcan be written as 

i 

ii D 0 0 
-2 
U pii+JE 0 1 

Af= uv pv m 0 At, 

-- 
i 

y --Y- 
q2u qq5+puu+- 

y-1 
p puv -u 

)’ - 1 

-= 
pu=pu, 

the flux-difference Af can also be written as 

(3) 

(4) 

(5) 

(6) 

In the sequel, the first matrix in (6) is denoted by T,. This matrix represents the 
transformation from conservative to primitive variables. 

In a similar way the flux-difference Ag can be written as 

Ag= T, A57 (7) 

where 

p o==p. (8) 
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Any linear combination of Af and Ag can be written as 

AF=a,Af+a,Ag=AA~=T,A”A~, 

where 

ti- a,p a2p 0 

a= 

0 a,@ a,)jp C 

with 

For the case a: + as = 1, the eigenvalues of the matnx A’ are 

A, = r? 

1, = n, 

while ,I3 and 1, are given by 

(A - $)(A- G) -up/p = 0. 

With the definition of 

(12) can be written as 

Hence 

63-4 = 3 + 2 - , 

where 

The following Mach numbers can be defined: 

n = i+fF, gj = qp, M = q;lE. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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The matrix A’ can be normalized by 

2 = T,AT, 

where 

T, = diag(p E, E2, E2, yp C) 

Ts = diag( l/p, l/E, l/C, l/yp) 

0 0 if? a,(l-6*) 

wnh 6 = i(ii;i- I@. 
The eigenvalues of the matrix A are 

Ak=iG, 12=fi, n,=A+ 1, A,=&- 1. 

The left eigenvector matnx of 2 is 

1 0 0 -1 

X= 0 aI a2 1+6 i 1 ’ 0 -a2 a, 0 

0 -a, -a2 l-6 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

The right eigenvector matrix of 2 is 

x-,= 0 0.5a,(l-6) -a2 
i 0 0 1 0.5a2(l-6) 0.5 0.5 a1 0 0 

-0.5a,(1+6) 
-0.5a2( 0.5 0.5 1 + 6) 1 ’ (23) 

Following the procedure of Steger and Warming for flux-vector splitting [ 11, the 
flux-difference given by (9) can be split into a positive and a negative part by 

A+ = Xp’A+X, A-=X-‘A-X (24) 

where 

A+ =diag(A:, A:, A;, A+ 4) 

A- =diag(A;, I;, A;, A;) 

with A,+ = max(A,, 0), A; = min(A,, 0). 
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3. CONSTRUCTION OF A POSITIVE SET OF EQUATIONS 

Figure 1 shows a control volume with the node (i,~) located inside it. Also the 
nodes located inside the adjacent volumes are indicated. When a piecewise constant 
interpolation of variables is chosen, the flux through the surface S,, ,,* of the 
control volume can be expressed by 

F I + l/2 =S(F,+F,+,-IAF,.,+,I), (25) 

where F, and F, + , denote the fluxes computed with the values of the variables at 
the nodes (i, j) and (i + 1, j), respectively. For simplicity, in the above, the non- 
varying index is omitted. 

Based on the previous section, clearly, a flux-difference between a flux calculated 
with values in the nodes (i, J) and (i+ 1, J) can be written as 

AF,,,,, =F,+, -F,=As,+,,Jr,r+, At,,,.,, (26) 

where As, + ,,2 1s the length of the surface S,, ,,,z. 
As shown in Fig. 1, the flux-difference across the surface S,, ,,,* can be written 

more explicitely as 

AF,,+, = AL’, + I/Z AL,, + I + Ax, + 1,~ Ag,, + I 

=As I+ 1,2(a, AA,, + I + ~12 Ag,, + I L (27) 

where 

Asf, l/2 = Ax?+ 112 + AYf+ 1:2 

al=A?ll+l~2/As,+121 ~2 = Ax, + IlAst + 112. 

* i,J- 1 

FIG 1 Control volume wth pwxwtse constant mterpolatton 
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With the notation of the previous section, introduced in (9), (27) corresponds to 
(26). 

Furthermore, the matrix A,, + , can be split into a positive and a negative part: 

A 1.1 + 1 = A:+,+A,;+,. (28) 

This allows the definition of the absolute value of the flux-difference by 

lAF,.,+,I=As,+,,~(A:+,-A,,+,)Ar,,,+,. (29) 

With (26)-(29), the flux F,+,,2 g iven by (25) can be written in either of the two 
following ways, which are completely equivalent: 

F r+,,Z=F1+tAF,,,+,-tlAFI,,+,I 

=F,+As,+,,‘zAi;+, AL+,, (30) 

F r+ -Fc+, 1’2 - - t AF,., + I - t I AF,,, + I I 

=F,+,-As,+,~A~+,A5,,,+,. (31) 

The fluxes on the other surfaces of the control volume S, _ ,,*, S, + 1,‘2r S, _ ,,*, can be 
treated in a similar way as the flux on the surface S, + ,,*. 

This leads to a flux-balance on the control volume indicated on Fig. 1, of the 
form 

AS r+~ rA,;+,(S,+,- 5,)+As,~,,,A,~-,(5,-r,-,) 

+ As,+ I,&+ At;,, , -5,)+As,-,*A,:,-,(4,-~,-,)=O. (32) 

The set of Eqs. (32) is both conservative and positive. 
It is conservative since tt exactly expresses the sum of fluxes on the control 

volume to be zero. It is positive since it can be put into the form 

C~r,,=A~,-,izA~-,5,~,,,+A~~+1~2(-A,~+,)5,+1,, 
+ As,- ,,~A~~/~,~,,,-I+As,+,~!~(-AJ.I+,)~,,,+I (33) 

where C is the sum of the matrix-coeffkients m the right-hand side and where all 
matrix-coefficients involved have non-negative eigenvalues. 

As a consequence of the positiveness, the set of equations of form (33) on all grid 
nodes can be solved by a vector variant of any scalar relaxation method. By a vec- 
tor variant it is meant that in each node, all components of the vector of dependent 
variables 5 are relaxed simultaneously. 

4. THE SPLITTING PROCEDURE IN STEADY TRANS~NIC FLOW 

In this and the followmg section, the flux-difference splitting is further detailed for 
a grid more or less aligned with the flow. As IS clear from the previous sections, this 
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restriction is not at all necessary. However, for an approximately aligned grad, some 
of the eigenvalues have fixed sign, simplifying the splitting considerably. 

For the matrices A,,,, , and A,, _, the Mach numbers involved in (21) are 
positive, but can be lower or higher than 1. For the matrices A,,,+, and A,,,- t, the 
Mach numbers m (21) can be positive or negative, but their absolute value is less 
than 1. 

For matrices of type A,,, + , , the positive and negative parts of the eigenvalues are 

a; = (fv, iii?, f@+ 1, R’) (34) 

a,- = (0, 0, 0, Ii?- - l), (35) 

where A? - 1 =min(a- l,O), 8+ =A?--&. 
With (34)-(35) and the definition of 

fI,=*max(l-fi,O) (36) 

0,= l-01, (37) 

the split parts of the matrix 2 defined in (10) become 

A+ = 

i 

,c BnP 822D 71/c 
= 0 ~++,,w, = 

~12Wl Sl2lP 

0 ~12Wl = rr+c?,,G, p22/p 

0 Bl2VP B22YP c+ 6, 

0 BllP B2lP 

0 5 = 

2-z 
-~I,~1 -tl,2w, 

0 -a12Gl -Crz2tT1 

0 Sl,YP BZl rP 

(38) 

(39) 

where 

c122 = a; a,, = or; Lx 12=v2 

Bll =a101 B12=%82 

Al = a281 P22 = u202 (40) 

W,=8,(1-6)C k, = t9,( 1 + S) c 

7,=8,/(1 +6). 

For matrices of type A,,,* , , the positive and negative parts of the eigenvalues are 

a: = (AZ+, R+, fi+ 1,O) (41) 

a, = (W, Ii?, 0, w- l), (42) 
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A’ = max(&F, 0) 

iTi+ = max(G, 0) 

R = min(ii;i, 0) 

A-- = min(G, 0). 

With (41~(42) and the definition of 

l9, =+(1-Q) 

e,= 1 -e,, 

the split parts of the matrix A” defined in (10) become 

where 

E* = 0.q 1 + &G) E 

B2zP 
= 

@12Wz 

?r+ +a,,;,, 

B22YP 

P21D 
= 

-a12w2 
=- = 

w - azz w2 

B2lYP 

(43 ) 

(4) 

f2/? 

812/P 

B22lP 

i 

(45) 

0.53 + ic2 

-t21C 

PlllP 
/L/P 

(46) 

0.5* - \t’p 

T2 = 0.5( 1 - I@;i( + 6iii)/( 1 - 82) 

G+ = max(ti, 0) F = min(5, 0) 
(47) 

6 + = max( G;, 0) G;- =min(G, 0). 

5. BOUNDARY CONDITIONS 

At in- and outflow boundaries, due to an assumption of nearly uniform flow, the 
T, -matrix is considered to be constant and the set of discrete equations simplifies to 

As,-1,2dt-,(rr-gr-,)+A~,+,,~dr,;+,(5,+1-5~) 

+ AsI- ,,2~,:,-,(5,-5,-,)+A~,+,,2~,~+,(5,+1-~,)=0, (48) 

where the matrices a,:-, and Al,+, , given by (38) and (39), further simplify, for 
subsonic in- and outflow, through 
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8, =f(l -M), &=f(l +M) 

U’l=+&C+-+ (49) 

6 =o, 

where M is the Mach number in the i-direction. 
The set of Eqs. (48) contains contributions of one node outside the com- 

putational domain, either i - 1 or i + 1. Combinations of the equations in (48) are 
to be made, eliminating the outside node. 

At the inflow boundary, one combination of Eqs. (48) is possible, eliminating the 
node i - 1. It is easily seen that 

where 

df = (0, a,/~, Q/C, - My). 
The resulting equation is to be supplemented with three boundary conditions: 
stagnation temperature, stagnation pressure, and flow direction. 

At the outflow boundary, three combinations of Eqs. (48) can be made by 
eliminating the node i + 1. Clearly 

for 

dT = dr, dc, or dj- 

where 

d; = ( l/p, 0, 0, - MJP) 

4-= (0, ~Jc, 4~ UYP) 

d:= (0, -a2, a,, 0). 

The resulting equations are to be supplemented by one boundary condition. This 
can be the specification of the Mach number. 

Figure 2 shows the choice of the control volume for a node on a solid boundary. 
The determination of the flux through the surfaces S, + 1,2, S, _ ,,*, and S, + ,,* is the 
same as for an internal node. In order to achieve consistency with the definition of 
the fluxes on the other surfaces, the flux on the surface S, is to be defined by 

F=F,,,-As,A;(L,,- 5,,, -I), (50) 

where (i, j- 1) is a fictitious node outside the flow field. Since the node (i, j) is on 
the surface S,, the matrix A + in (50) is evaluated with the values of the variables in 



FLUX-DIFFERENCE SPLITTING 29 

FIG 2 Control volume for a node on a sohd boundary 

thts node. According to Fig. 2, the condition of impermeability on the surface S, 
reads 

a14,,+ a2v,,,=0. (51) 

A similar reasoning applies to a node on a northern boundary, involving the matrix 
‘4,;. 

Due to the condition (51), the following simplifications can be made in A’ + and 
A-, given by (45) and (46): 

M’=;‘=() 

6=0 

t2 = 0.5 (52) 

PC2 = G2 = 0.5c 

e, = 9, = 0.5. 

By substitution of (52) into (45) and (46), it is easily seen that 

for 

where 

d’= dr, d:, or d:, 

dT = (W/P, 0, 0, - 1) 

dT= (0, a2, -a,, 0) 

d:= (-C/P, aI, a2, 0). 
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Similarly, 

with 

dT = d:, d:, or di 

d:=(+c/p, al, a,,O). 

Using (9) and (51) it is seen that 

eTA+ = 0 

for 

e T = ef, el, e; 

where 

ef=(H,O,O, -1) 

eT=(-(u*+u*),u,u,O) 

eT= C-c, aI, a2, 0) 

and 

for 

eTA A =0 

eT = e f, ec, e:, 

where 

The nodal equations at a solid boundary are premultiplied by eT, with i= 1, 2, 3 on 
a southern boundary and i = 1,2,4 on a northern boundary, leading to three 
significant equations. These are supplemented with the kinematic boundary con- 
dition (51). 

6. NUMERICAL EXAMPLE 

Figure 3 shows the well known GAMM-test case [ 121 for transonic flows, 
discretized by a grid with 36 x 12 elements. In the actual computation a once 
more refined grid was used with 72 x 24 elements. Vertex-based finite volumes, as 
indicated in Fig. 2, were used. 
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FIG 3 Coarse computatlonal gnd 

FIG 4 Iso-Mach hnes for the geometry of Ftg 3 on a once more refined gnd 

t 
‘P 

FIG. 5 Calculated pressure dlstnbutlon on the southern boundary 
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At inflow, the specification of a horizontal flow direction was used as a boundary 
condition. At outflow the Mach number was fixed at 0.85. 

Starting from a uniform flow at Mach number 0.85, the discrete equations were 
solved by Jacobi relaxation with a relaxation factor 0.95. It IS to be remarked that 
for systems of equations, the theorettcal maximum relaxation factor 1s not 2, but 1. 
It took about 300 iterations to obtain a solution in which the nodal Mach numbers 
are within 1 o/oo of their fully converged values. The computation time for these 300 
iterations is about 7.5 cpus on the cyber-205 with a vectorized version of the code. 

Figure 4 shows the iso-Mach lines for the fully converged solution plotted by 
piecewise linear interpolation within the elements of the grid. Figure 5 shows the 
surface pressure distribution on the southern boundary. 

The obtained solution coincides almost with the solution obtained from the most 
reliable time-marching methods reported in [ 123. However, unlike most time- 
marching solutions, due to the guaranteed positiveness everywhere, the solution has 
no wiggles in the shock region. 

7. CONCLUSION 

It was shown that by the polynomial flux-difference approach a conservattve 
dtscretizatton for steady Euler equations can be obtamed, which is of positive type. 
The solutron of the equations can be obtained with relaxation methods, leading to 
elliptic solution procedures for this hybrid partial differential problem. 
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